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Abstract 

Characterizations of land cover dynamics are among the most important applications of Earth 

observation data, providing insights that inform management, policy and science. Recent 

progress in remote sensing and associated digital image processing offers unprecedented 

opportunities to more accurately detect changes in land cover over increasingly large areas, with 

diminishing costs and processing time. The advent of high spatial resolution remote sensing 

imagery further supports opportunities to apply change detection with object-based image 

analysis, i.e. object-based change detection – OBCD. Compared to the traditional pixel-based 

change paradigm, OBCD has the ability to improve the identification of changes for the 

geographic entities found over a given landscape. In this article, we present an overview of the 

main issues in change detection, followed by the motivations for using OBCD as compared to 

pixel-based approaches. We also discuss challenges that are raised due to the use of objects in 

change detection, and provide a conceptual overview of solutions, which are followed by a 

detailed review of current OBCD algorithms. In particular, OBCD offers unique approaches and 

methods for exploiting high spatial resolution imagery, to capture meaningful detailed change 

information in a systematic and repeatable manner, corresponding to a wide range of information 

needs.  

 

1. Introduction 

Since the advent of satellite based Earth observation, land cover change detection has been a 

major driver of developments in the analysis of remotely sensed data (Anuta and Bauer 1973, 

Anderson 1977, Nelson 1983, Singh 1989, Lu et al. 2004, Aplin 2004, Coppin et al. 2004). More 

recently, high spatial resolution imagery has been available from commercial operators providing 

unique opportunities for detailed characterization and monitoring of forest ecosystems (Wulder 

et al. 2004, 2008c, Hay et al. 2005, Falkowski et al. 2009), urban areas (Herold et al. 2002, Hay 

et al. 2010) and additional applications developed to address increasingly detailed information 

needs (Castilla et al. 2008, Chen et al. 2011). Land cover change refers to variations in the state 

or type of physical materials on the Earth’s surface, such as forests, grass, water, etc., which can 

be directly observed using remote sensing techniques (Fisher et al. 2005). As human induced 

change occurs at an increasingly rapid pace, and as Earth observation data become ubiquitous, 
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remote sensing based monitoring systems are expected to further play crucial roles in 

environmental policy and decision making.  

Accurately monitoring land cover is a matter of utmost importance in many different 

fields. Satellite or airborne based monitoring of the Earth’s surface informs on interactions 

between anthropogenic and environmental phenomena, providing the foundation to better use 

natural resources (Lu et al. 2004). It enables refined policy development and the capacity to 

address otherwise inaccessible science questions (Cohen and Goward 2004). Remote sensing 

change detection, defined by Singh (1989) as “the process of identifying differences in the state 

of an object or phenomenon by observing it at different times”, provides a means to study and 

understand ecosystems’ patterns and processes at a range of geographical and temporal scales. 

While knowledge of land cover conditions at a given point in time is important, the dynamics or 

trends related to specific change conditions offer unique and often times important insights, 

ranging from natural disaster management to atmospheric pollution dispersion. Indeed, remotely 

sensed imagery is really an important source of data available to systematically and consistently 

characterize change in terrestrial ecosystems over time (Coops et al. 2006).    

The capacity for large geographical coverage, high temporal frequency, and low cost, 

combined with an increasingly wide selection of spatial and spectral resolution options, further 

enhances the use of remotely sensed imagery for land cover change detection. Over the past three 

decades, numerous studies have been conducted to explore the feasibility and accuracy of image 

analysis applications for monitoring land cover change (Singh 1989, Coppin and Bauer 1996, 

Mas 1999, Lu et al. 2004, Aplin 2004, Coppin et al. 2004). However, the availability of high 

spatial resolution imagery from satellite and airborne platforms has resulted in a need to 

reconsider these traditional change detection image processing approaches. 

Traditionally, change detection techniques have used individual pixels as their basic units 

of analysis, which we refer to hereafter as pixel-based change detection. Recently, high-

performance computing systems and efficient software algorithms enable increased opportunities 

for segmentation and feature extraction from multispectral and multiscale remotely sensed 

imagery, which in turn facilitate the seamless integration of raster-based image processing and 

vector-based GIS (Geographic Information System) functionalities (Blaschke 2010). These 

developments have also enabled the implementation of a recent change detection approach, 

referred to as Object-Based Change Detection (OBCD) (Hall and Hay 2003, Blaschke 2005). 
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OBCD has evolved from the concept of Object-Based Image Analysis (OBIA), [more recently 

referred to as Geographic Object-Based Image Analysis (GEOBIA) (Hay and Castilla 2008)], 

which combines segmentation, spatial, spectral and geographic information along with analyst 

experience derived from image-objects in order to model geographic entities (Blaschke and Hay 

2001, Hay and Castilla 2008). Image-objects are groups of pixels in the image that represent 

meaningful objects in the scene. A feature of OBCD is to extract meaningful image-objects by 

segmenting (two or more) input remote sensing images; which is consistent with the original 

notion of using change detection to identify differences in the state of an observed “object or 

phenomenon” (Singh 1989). To better understand the concept of OBCD, we define it as ‘the 

process of identifying differences in geographic objects at different moments using object-based 

image analysis’.  

As the spatial and temporal resolution of remote sensing technologies increases, so too do 

the demands of users for timely and relevant geospatial change information that is object-based 

and able to seamlessly work with existing geospatial analytical platforms. The challenge then 

becomes knowing which data, tools and methods provide the best solutions for specific problems 

and what limitations still need to be addressed? In response to these concerns, Section 2 provides 

a brief overview of main issues in change detection. Section 3 outlines the motivations of using 

image-objects over pixels to better deal with some of those issues. We also note that new 

challenges are further raised in OBCD. Section 4 provides a conceptual overview of these 

challenges and possible solutions based on the literature. In Section 5, we summarize and review 

recent OBCD algorithms, followed by the conclusion to this review in Section 6. 

 

2. Main issues in change detection 

The accuracy of change detection using remotely sensed imagery depends on many important 

factors. Change detection algorithm is an apparent one; however, no specific algorithm has 

claimed to be suitable for all projects. Meanwhile, several other main issues should also be 

carefully considered before/while conducting change detection, as the neglect of these issues is 

unlikely to produce a satisfactory change detection result.  In subsequent sections, six main 

issues are briefly discussed.    

 

2.1. Spatial scale 
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In the context of remote sensing, spatial scale typically corresponds to spatial resolution, i.e., 

pixel size (Woodcook and Strahler 1987). As the most significant spatial element in remote 

sensing, spatial scale represents a window of perception through which a landscape is viewed 

(Marceau and Hay 1999, Aplin 2006). Typically, low resolution images are able to efficiently 

monitor the changing Earth’s surface over large areas. However, this can also result in mixed 

pixels that represent a weighted average of the spectral response of various land cover types 

(Aplin 2006), causing difficulties to accurately define specific changes. High spatial resolution 

imagery may be sufficient to delineate the individual geographic objects of interest, whereas high 

spectral variation within objects is also generated. In this case, a large amount of small spurious 

changes are possibly produced. A further note on high resolution is that it is more difficult to 

perform an accurate image registration than using low resolution, resulting in the decrease of 

change detection accuracy (refer to Section 2.4 for details).   

 

2.2. Temporal scale 

Temporal scale is also called temporal resolution, which refers to the time interval between 

successive image acquisitions at the same site (Mather 2004). It is critical for analysts to 

understand the project objective and be familiar with the characteristics of geographic objects of 

interest before collecting remote sensing imagery. For example, anniversary images are suitable 

to monitor forest changes in long-term trends, such as the changes induced by human activities, 

as the seasonal phonological differences can be minimized. However, a short-term phenomenon, 

such as forest fires, requires imagery to be acquired at finer temporal scales. As Coppin et al. 

(2004) argued that the proper understanding the nature of the change is more sophisticated than 

the simple detection of change itself.  

 

2.3. Viewing geometry  

The collection of multi-temporal imagery requires the consideration of both look angle and Sun 

angle, which are critical factors impacting the reflectance of geographic objects on Earth's 

surface. Ideally, only the tops of these objects are visible, if the remote sensing imagery is 

acquired directly at nadir (i.e. 0º off-nadir look angle). However, the sensors can tilt as much as 

20º for some systems, e.g. SPOT, IKONOS and Quickbird (Jensen 2005). Consequently, both 

the object tops and their sides are recorded, where the increase of sensor off-nadir look angle 
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enables collecting more object side information and decreasing image spatial resolution. 

Similarly, the reflectance of geographic objects also varies with the change of Sun angle. For 

example, a low Sun angle typically contributes to a severe shadow effect in a high spatial 

resolution image, especially when a ground object (e.g., urban skyscraper) is much taller than the 

neighbours. It is therefore suggested that data collected for change detection should use 

approximately the same sensor look angle and Sun angle (Jensen 2005).  

 

2.4. Image registration  

As an essential pre-processing for change detection, multi-temporal image registration ensures 

that the changes detected are not because we compare land surface objects at different 

geographic locations between one time and another (Townshend et al. 1992). The performance 

of image registration is typically related to two factors: image spatial resolution and the structure 

of geographic objects of interest. For example, misregistration is possibly to occur at the pixel 

level using very high spatial resolution imagery (e.g., 1 m IKONOS), while it is easier to achieve 

registration accuracy at the subpixel level using relatively low resolution data (e.g., 30 m 

Landsat). In addition to spatial resolution, Dai and Khorram (1998) have further proven that the 

finer the spatial frequency in the images, the greater the effects of misregistration on change 

detection accuracy. In their tests, the registration accuracy of less than one-fifth of a pixel was 

required in order to detect 90% of the true changes (Dai and Khorram 1998).  

 

2.5. Radiometric correction or normalization 

Radiometric correction is another critical pre-processing for change detection, because images 

captured on multiple dates may have radiance or reflectance differences due to (i) the improperly 

functioning of the remote sensing system, and/or (ii) atmospheric attenuation caused by 

absorption and scattering in the atmosphere (Jensen 2005). Readers may refer to Lu et al. (2004), 

Coppin et al. (2004) and Jensen (2005) for thorough review of radiometric correction methods 

used in recent change detection. Additionally, it has been confirmed by several studies that 

absolute or complicated radiometric correction algorithms may not lead to significantly 

improved change detection accuracy; thus, the use of relative radiometric correction to normalize 

intensities of bands of multi-temporal imagery to a reference scene is sufficient for many change 

detection applications (Collins and Woodcock 1994, Song et al. 2001, Coppin et al. 2004).  
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2.6. Features applied in change detection schemes 

Change detection can be directly conducted comparing spectral bands (e.g., image differencing 

or ratioing). However, extra features extracted from the spectral information are increasingly 

applied to improve change detection accuracy. Of these features, the most important one is 

image-texture, which normally refers to the measurements of the spatial variability of 

neighbouring pixels within a moving window/kernel assessed across the image. Recently, the 

addition of image-texture has proven more effective than using spectral bands alone for change 

detection (Ward et al. 2000, Li and Leung 2002, Wu et al. 2010). A commonly used image-

texture in the remote sensing community is the statistical approach, which includes first-order 

(e.g., standard deviation and skewness) and second-order [e.g., grey level co-occurrence matrix 

(GLCM) and semivariance] statistics (Haralick et al. 1973, Tuceryan and Jain 1998, Atkinson 

and Lewis 2000). Additionally, it should be noted that several other features, such as the 

vegetation index of NDVI and bands of principal component analysis (PCA), can also facilitate 

the improvement of change detection performance (Ward et al. 2000, Deng et al. 2008). 

 

3. Image-objects in change detection: motivations 

For over three decades, pixel-based change detection has been, and remains an important 

research topic in remote sensing. Several review papers have presented thorough explorations of 

pixel-based change detection techniques and their related applications (Singh 1989, Lu et al. 

2004, Aplin 2004, Radke et al. 2005). According to these papers, critical issues persist, some of 

which are associated with data quality and landscape complexity, while others are related to the 

nature of pixel-based algorithms. Recent studies have demonstrated that OBCD characteristics 

can provide improvements over pixel-based change detection by solving or partially solving 

several change detection issues using pixels, especially when high spatial resolution imagery is 

used. In the following sub-sections, we outline these specific issues that are also related back to 

the previous Section 2, and discuss the motivations of using the object-based paradigm with a 

comparison to pixel-based change detection.  

 

3.1. Spatial multiscale analysis 

As objects of interest exist within a scene, often within a range of different sizes, shapes and 

times, no single spatial resolution is sufficient to capture all of their characteristics (Woodcock 
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and Strahler 1987, Hay et al. 1997). From a pixel-based perspective this also means that it is 

difficult to define a unique spatial resolution to accurately monitor the changes of all types of 

geographic objects (Marceau et al. 1994). To address this challenge, the object-based paradigm 

enables the characterization of different landscape features within the same image using different 

object sizes, each of which are composed of pixels with the same spatial resolution. Scale 

parameters, which define the mean, minimum, and maximum object size, are often used to 

optimize the delineation of individual features, resulting in improved change detection accuracy 

(Hall and Hay 2003, Laliberte et al. 2004, Hese and Schmullius 2004, Durieux et al. 2008, 

Johansen et al. 2008). A typical example is the change detection using multiscale object-based 

classification results of multiple dates, where a high accuracy classification definitely facilitates 

the improvement of change detection performance. Figure 1(a) represents a wildland-urban 

interface area that has been classified using a two-scale object-based approach (Cleve et al. 

2008). A small scale was applied to delineate houses, while a large scale was more appropriate to 

capture vegetation patches. The classification accuracy improved by 18% compared to that using 

the pixel-based approach [Figure 1(b)] (Cleve et al. 2008).  

 

3.2. Reduction of small spurious changes  

When observing a common scene, a high spatial resolution image provides more details than a 

lower spatial resolution image. However, this increased spatial resolution generates high spectral 

variability within geographic objects, which typically reduces change detection (and 

classification) accuracy when using pixel-based algorithms. Isolated pixels or holes (also known 

as the salt-and-pepper effect) often occur (Marceau et al. 1990, Desclée et al. 2006, Bontemps et 

al. 2008, Hofmann et al. 2008). As an alternative, OBCD monitors the change of meaningful 

image-objects, which model actual geographic entities (Castilla and Hay 2008). Each image-

object is considered as one single study unit. Detected small spurious changes that are due to 

high spectral variability, therefore, are reduced by smoothing out small changes within the extent 

of each geographic object. Objects that are smaller than a specified size can simply be merged 

into the matrix. For example, when monitoring land cover dynamics in an urban area, Zhou et al. 

(2008) compared the object-based and pixel-based change detection approaches. Figure 2 shows 

that a large number of small spurious changes have disappeared by using image-objects, which 

achieved an accuracy that was 9% higher than using pixels (Zhou et al. 2008).   
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  Both anthropogenic and natural landscape features often show heterogeneous internal 

reflectance patterns (e.g. shadowing effects) that are not constant through time due to variations 

in sun-surface-sensor geometry inherent to multitemporal image acquisitions (Wulder et al. 

2008a). Change detection using image-objects may provide better solutions to mitigate the effect 

of illumination changes. For example, Wulder et al. (2008b) describe a method to track changes 

in vegetation health status at an individual tree level from four years of Quickbird imagery, 

acquired with different viewing geometries (Figure 3). Statistical analysis demonstrated that 

while individual trees may not be tracked over time, the segment level tree counts were not 

statistically different (Figure 4). Consequently, when incorporated with spectral measures of 

vegetative health, the segment level tree counts could be combined to inform on the nature of 

insect population dynamics over time.    

  Misregistration between the same features on multitemporal images is a further critical 

source of error. As stated by Mäkelä and Pekkarinen (2001) and Desclée et al. (2006), 

segmentation that generates image-objects is less sensitive to misregistration errors than 

traditional pixel-based approaches. Blaschke (2005) further recommends a GIS framework to 

deal with this issue. For example, Figure 5 shows that two types of image-objects (i.e., 

rectangular and circular) both have a slight misregistration error between two-date images. The 

small spurious changes could be distinguished from real changes after a GIS analysis is 

performed, where several object characteristics (e.g., area, shape and perimeter) can be 

considered. 

 

3.3. Object-based features  

Rather than concentrating on isolated pixels of varying color, remote sensing image analysis 

using objects allows for the extraction of sophisticated geospatial information with unique 

object-based features, such as geometry, texture and context (Hay and Castilla 2008, Blaschke 

2010). Although pixel-based approaches also generate texture, the neighbourhood used to 

retrieve spatial information is typically defined by a square window of fixed size (e.g. 5 by 5 

pixels), which is passed across the entire dataset. Though square windows are trivial to 

implement, they are biased along their diagonals, and will likely straddle the boundary between 

two landscape features, especially when a large window size is used (Laliberte and Rango 2009). 

As a result, it has been argued that the traditionally unsophisticated extraction and use of spatial 
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information remains a critical drawback to pixel-based image processing routines in change 

detection (McDermid et al. 2003). Object-based approaches have an advantage of being able to 

define window size and shape based upon local object characteristics from which to extract 

spatial information. Thus, image-objects generated through the segmentation process in turn 

serve as contextual windows. Besides the texture extracted within individual image-objects, a 

higher order of texture that takes into consideration the spatial distribution of adjacent objects 

can also be generated (Figure 6, Chen and Hay 2011). In a case study of modelling forest canopy 

height, Chen et al. (2011) found that the adding of object-based texture better facilitates the 

improvement of model performance than using the traditional square windows at most evaluated 

scales. The effectiveness of using object-based features has also been proven by recent change 

detection studies, including urban land use change (Herold et al., 2002), shrub encroachment 

(Laliberte et al. 2004), mangrove ecosystem dynamics (Conchedda et al. 2008), forest death 

monitoring (De Chant and Kelly, 2009), etc. We further note that many object-based features are 

already available in commercial remote sensing software, such as eCognition suite (Definiens 

Imaging GmbH, Munich, Germany), the ENVI EX module (ITT Visual Information Solutions, 

Colorado, USA), the ERDAS IMAGINE Objective module (ERDAS Inc. Norcross, USA) and 

PCI’s FeatureObjeX (PCI Geomatics, Ontario, Canada).  

 

4. Challenges and opportunities in OBCD 

To represent geographic objects in OBCD, remote sensing imagery are typically segmented 

resulting in ‘segments’ from which meaningful image-objects can be generated, based on their 

spatial and spectral attributes and user experience (often in the form of rule-sets). Change 

detection is performed by tracking the objects that show differences in their spatial and/or 

spectral attributes over time. Not only do many segmentation algorithms exist (Pal and Pal 1993) 

that affects the resulting object geometries, but many pixel-based change detection algorithms 

can also be transferred to the object domain. For example, the idea of comparing pixel values can 

be used to compare object values. However, users must be aware that objects in OBCD are of 

various sizes and shapes, which require specific solutions to deal with their object-related 

characteristics. Based upon the previous research activities in OBCD, the following sub-sections 

provide a conceptual overview of object-based challenges and opportunities.  
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4.1. Comparison of image-objects 

Since image-objects are used as the basic study units in OBCD, the most important issue that 

needs to be dealt with is how to define changes between them. An immediate solution is the 

comparison of image-objects of multitemporal dates at the same geographic location, as does in 

pixel-based change detection. Typically, image-objects can be either (i) directly compared using 

object spectral information and/or associated features (Hall and Hay 2003, Miller et al. 2005, 

Chen and Hutchinson 2007, Lefebvre et al. 2008, Gong et al. 2008), or (ii) compared after an 

object-based classification (Willhauck et al. 2000, Laliberte et al. 2004, Walter 2004, Owojori 

and Xie 2005, Blaschke 2005, Durieux et al. 2008, De Chant and Kelly 2009). Statistics or GIS 

functions are typically used in the comparison of image-objects. Different from pixel-based 

approaches, the majority of OBCD algorithms mentioned above have employed object-based 

features (e.g. geometry, texture and context), which provide great opportunities to better monitor 

land cover changes than using spectral information alone.  

 Another type of OBCD algorithms has managed to derive image-objects by segmenting 

all multitemporal states of the scene in one step (Desclée et al. 2006, Bontemps et al. 2008, 

Conchedda et al. 2008, Stow et al. 2008, Duveiller et al. 2008, Park and Chi 2008, Im et al. 

2008). Consequently, the comparison of image-objects is more straightforward than the 

algorithms aforementioned, as the geometry (e.g. shape or size) difference of multitemporal 

image-objects (at the same geographic location) does not demand further considerations.  

 Several previous studies have also confirmed the effectiveness of incorporating pixel-

based procedures into object-based schemes (Carvalho et al. 2001, Al-Khudhairy et al. 2005, 

Niemeyer et al. 2005, McDermid et al. 2008, Linke et al. 2009). These OBCD algorithms 

usually obtain preliminary change results using pixels. The object-based paradigm is further 

applied to improve the change detection performance.    

 

4.2. Sliver polygons 

Sliver polygons typically refer to small overlap areas or gaps, which result from errors in the 

overlay of two or more GIS coverages (Goodchild 1978). Change detection with image-objects 

inevitably generates sliver polygons, when these objects are individually derived and compared. 

This is typically due to image misregistration and inconsistent segmentation. As image 

misregistration is an apparent reason, the inconsistent segmentation is further discussed. Due to 
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the reason that multitemporal images are taken at different times, even if no land cover change 

occurs within the considered time interval, the images tend to be different due to variations in 

Sun angle, sensor look angle, cloud coverage, etc. Consequently, it is almost impossible to 

independently generate exactly the same image-object boundaries for the same landscape 

features in multitemporal images. 

An ideal solution is to develop a robust segmentation algorithm by replicating human 

interpretation. However, such an algorithm is and will still be unfeasible in the long term. Recent 

studies have provided several realistic solutions. For example, McDermid et al. (2008) and Linke 

et al. (2009) generated annual maps by updating and backdating their existing object-based 

reference maps. A prerequisite to applying this approach is to have high-accuracy reference 

maps, as changes are examined against these pre-existing conditions. Another type of solution 

was initially provided by Desclée et al. (2006) by segmenting multitemporal images in one step. 

This basic idea has been followed by many other OBCD studies (Bontemps et al. 2008, 

Conchedda et al. 2008, Stow et al. 2008, Duveiller et al. 2008, Park and Chi 2008, Im et al. 

2008, Huo et al. 2010). Concurrent to developments in OBCD, image processing techniques 

have also been developed that allow slivers to be treated as information rather than as noise. For 

example, if we consider an insect infestation over time, an impacted area can be expected to 

fluctuate. Thus, spatio-temporal methods may be applied to the (sliver) polygons to determine if 

a particular object is stable, expanding, or contracting (Robertson et al. 2007).  

 

4.3. Evaluation of change results 

The commonly used accuracy assessment elements in pixel-based change detection include: 

overall accuracy, producer’s accuracy, user’s accuracy and the Kappa coefficient (Lu et al. 

2004). When pixels are considered the basic study units, it is reasonable to use the pixel-level 

truth data to evaluate the change results. However, this is not the case when assessing object 

change accuracy [with comparison issues described in Wulder et al. (2006)]. Although the 

accuracy assessment elements used in pixel-based change detection have been directly applied to 

evaluate the OBCD performance, the critical difference is the reference data type, which can be 

either points (i.e. pixels) or objects. Some studies used point data to check the change accuracy 

(McDermid et al. 2003, He et al. 2005, An et al. 2007, Im et al. 2008, Conchedda et al. 2008, 

Linke et al. 2009). The advantage is that points are relatively easy to acquire and simple to 
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overlay onto change images. However, Biging et al. (1999) argued that pixel-based accuracy 

assessments tend to underestimate object-based map accuracy. Other researchers have used 

objects as their reference data (Yu et al. 2004, Al-Khudhairy et al. 2005, Desclée et al. 2006, 

Durieux et al. 2008, Stow et al. 2008, Bouziani et al. 2010). Their results show that objects may 

be well suited to quantify changes when only one class of the landscape feature (e.g. shrub, 

building or tree) is the research emphasis, although the change detection accuracy evaluated with 

objects is more complicated than using pixels. 

Unlike pixel-based change metrics, beyond disappearance or emergence of features, 

geographic objects can also partially change (e.g. minor, moderate or major changes). For 

example, one homogeneous forest stand may be entirely removed to form a cutblock, or partially 

modified due to seasonal dynamics. OBCD offers opportunities to evaluate different change 

levels by using object-related characteristics, such as size, shape and variability within the 

boundary extent, although few studies have considered this reality (Chen and Hutchinson 2007).   

 

5. A review of OBCD algorithms 

In this section, we explore the state-of-the-art OBCD algorithms by classifying them into four 

categories: (i) image-object, (ii) class-object, (iii) multitemporal-object, and (iv) hybrid change 

detection. 

 

5.1. Image-object change detection 

Similar to pixel-based change detection, OBCD can be performed by directly comparing image-

objects defined by a threshold. Typically, multitemporal images are segmented separately with 

changes analyzed based on object’s spectral information (e.g. averaged band values) or other 

features extracted from the original objects (e.g. image-texture and geometry). In this review, the 

OBCD algorithms which emphasize direct image-object comparisons are grouped as image-

object change detection.  

 Miller et al. (2005) presented an OBCD algorithm to detect the change of significant 

blobs (i.e. objects) between a pair of gray-level images. Two main steps were used. First, objects 

were extracted by using a connectivity analysis. Second, each object from the base image was 

searched for a corresponding object in another image. To detect whether two corresponding 

objects were really different (i.e. changed) or not, a matching method was used to capture the 
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relationship between two object boundary pixels. By applying this object-based concept, the 

authors argued that the proposed algorithm worked for noisy input images and that no pre-

defined windows were required, as processing was directly undertaken on the extracted objects. 

Lefebvre et al. (2008) further evaluated the use of geometry (i.e. size, shape and location) and 

content (i.e. wavelet transform-derived texture) information in OBCD. Their qualitative results 

indicated that both object contour and texture features were effective to detect changes in very 

high resolution airborne images at the sub-meter level, and further recommended the application 

of their algorithm to spaceborne images.  

Aforementioned studies have been conducted at one certain scale. To delineate image-

objects and identify their change through scales, Hall and Hay (2003) developed an OBCD 

framework by first segmenting panchromatic SPOT scenes from two dates, and then directly 

applying an image differencing method to detect object changes at different up-scaled 

resolutions. To avoid subjective change threshold decisions, a non-parametric and unsupervised 

method proposed by Otsu (1979) was used, to automatically select thresholds. Their results 

revealed that the sensor related striping noise was effectively ignored; and a foundation for 

exploring both fine and coarse scales was established. Gong et al. (2008) also used the multiscale 

logic. However, rather than simply changing image resolution, they created a full-scale object 

tree by extracting all segmented objects using a hierarchical structure; where all objects of 

different scales were segmented from a single scene. Spatially corresponding (artificial) objects 

from two-date images were then compared to detect their structural changes. Compared to the 

typical multiscale segmentation, their objects were more accurately extracted, which improved 

the change detection performance.  

Compared to the approaches with ideas directly borrowed from the pixel-based change 

detection, OBCD may need unique solutions to deal with specific conditions. For example, Chen 

and Hutchinson (2007) made a comparison of three types of OBCD algorithms, i.e. correlational 

analysis, PCA (principle component analysis) and boundary compactness analysis. The first two 

algorithms performed similar to pixel-based change detection; however, objects were used rather 

than pixels. The third algorithm (boundary compactness) was presented to deal with their 

specific change detection problem – earthquake-caused urban damage. The hypothesis used in 

this algorithm was that the boundary of a before-damage structure had a continuously closed 

edge, while this characteristic dramatically weakens after damage. Compared to the previous two 
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algorithms, this new approach of using boundary information provided a better agreement with 

the manually derived reference map, though a threshold had to be defined. 

The major advantage of image-object change detection is the straightforward comparison 

of objects. The algorithms are also easy to implement. Typically, all objects are directly 

extracted through image segmentation, and steps, such as image differencing, are similar to those 

in pixel-based change detection or simple GIS intersection operations. However, as objects are of 

different sizes and shapes, a critical procedure is the search for spatially ‘corresponding’ objects 

in multitemporal images. Errors in locating these objects will potentially lead to incorrect change 

detection results. This might explain the reason why the direct comparison approach is suitable 

for detecting specific objects of interest, such as artificial landscape features (Miller et al. 2005, 

Gong et al. 2008). Another challenge with image-object change detection is the requirement to 

select an appropriate change threshold. Since the threshold value is often intuitively defined by 

researchers, a bias may be introduced. However, we note that this challenge also exists in pixel-

based change detection, where change/no-change thresholds must be defined. 

 

5.2. Class-object change detection 

A direct comparison of image-objects cannot readily indicate the ‘from-to’ change of landscape 

classes (i.e. from clear-cut to vegetation), which requires additional classification information. In 

this review, class-object change detection represents a group of OBCD algorithms that detect 

landscape changes by comparing the independently classified objects from multitemporal 

images. Since each object belongs to a specific class, the object comparison step in OBCD has 

no need to consider features such as object spectral and texture values.  

The update of existing maps or GIS layers is an immediate application for using class-

object change detection. Durieux et al. (2008) applied an object-based classification approach 

(using fuzzy membership functions) to a 2.5 m SPOT mosaic covering an entire island of 2,512 

km2. The extracted buildings were compared with the old reference maps to monitor the urban 

sprawl over six years. Similarly, Walter (2004) evaluated the importance of using different input 

channels (i.e. spectral, vegetation indices and texture) in an object-based classification, which led 

to different results when updating GIS layers. They suggested that the assessment of additional 

object characteristics, derived from laser data, texture measures, and multitemporal data would 

improve both classification and change detection performance. We note that in the 
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aforementioned studies GIS polygons (or existing maps) were considered as the base layer, with 

the change classes updated from a comparison with single date imagery. However, this is not the 

case in many other studies, which require creating objects from multitemporal remote sensing 

images. Laliberte et al. (2004) conducted an object-based classification on 11 aerial photos and 

one QuickBird image spanning 67 years. As the authors were only interested in the change of 

vegetation area, the total change values were calculated without considering their change in 

spatial distribution. In related studies, the results only involved a change map by directly 

overlaying two-date classified images or several change metrics, such as total area, mean nearest 

neighbour distance and mean elevation (Willhauck et al. 2000, Owojori and Xie 2005, Mouflis et 

al. 2008). Although multitemporal data were processed in these studies, the change detection 

procedure emphasized the use of object statistics.  

To better understand how an individual object changes over time (such as spatial 

distribution, total area, perimeter, shape, complexity, etc.), additional efforts are required to 

compare each pair of the correspondingly classified objects. However, as discussed by Blaschke 

(2005), it is difficult to distinguish whether the object difference is due to real change or 

geometric inconsistence (e.g. caused by a misregistration error or a segmentation-induced 

difference). This lead to the development of a GIS conceptual framework, where a series of rules 

were defined by taking into account object size, shape and location (Blaschke 2005). Similar 

ideas were also applied in many other independent studies (Hazel 2001, Li and Narayanan 2003, 

Gamanya et al. 2009, Grenzdörffer 2005, De Chant and Kelly 2009); with specific rules adapted 

to particular conditions. For example, since forest gap dynamics are important to monitor tree 

diseases, De Chant and Kelly (2009) converted raster polygons classified as gaps, to vector 

layers and performed object intersection functions with GIS software. Changes were tracked by 

analyzing object metrics including perimeter, area, shape and Euclidean nearest neighbour. To 

detect military object changes, Hazel (2001) compared corresponding objects derived from two 

dates by calculating association confidence, which includes the spatial distance between the 

object centroids, the degree of spatial overlap, a distance between spatial and spectral feature 

vectors, and differences in assigned classification and classification confidence. Similarly, Li and 

Narayanan (2003) quantified lake change using a shape similarity measure.  

In addition to geometric information, it is still valuable to use spectral and/or texture 

measures to compare the classified objects. In the studies conducted by He et al. (2005) and An 
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et al. (2007), an object-based classification was simply used to detect ‘possible’ changed objects 

(e.g. non-urban to urban). A further verification of whether the change was real or not, involved 

the calculation of object similarity using spectral and texture characteristics.  

Change detection based on classified objects is a common type of OBCD approaches 

which can produce straightforward results (e.g. a change matrix) indicating the ‘from-to’ 

landscape change. However, specific rules have to be defined to compare objects when GIS 

processing is involved. One interesting idea, referred to as object-fate (Schöpfer et al. 2008) is to 

define buffers of possibility, or states of change around each object. Similar to pixel-based 

change detection, the performance of OBCD is also strongly influenced by the initial 

classification procedure. Details of pixel-based classification accuracy assessment have been 

discussed by Foody (2002) and Fuller et al. (2003). As for the object paradigm, classification 

accuracy is also related to the selection of appropriate image segmentation techniques, of which 

many exist (Pal and Pal 1993). Practitioners must also note that error propagation in both 

segmentation and classification will affect the OBCD performance. 

 

5.3. Multitemporal-object change detection 

Images acquired from different dates rarely capture the landscape surface the same, due to many 

factors including illumination conditions, view angles and meteorological conditions (Wulder et 

al. 2008a). Thus, segmentation generated image-objects from different dates often vary 

geometrically, even though they represent the same geographic feature(s). Instead of separately 

segmenting multitemporal images, the concept of multitemporal-object change detection takes 

advantage of all multitemporal states of the scene. Specifically, temporally sequential images are 

combined and segmented together producing spatially corresponding change objects.  

The pioneering work of Desclée et al. (2006) presented an explicit algorithm to 

implement a multitemporal-object change detection approach. The authors segmented an entire 

multi-date image-set together followed by a calculation of its spectral features (i.e. mean and 

standard deviation) from each date for all image-objects. Finally, discrimination between 

changed and unchanged objects was performed using a statistical analysis based on the chi-

square test. Using this approach, the authors reported high detection accuracy (> 90%) and 

overall Kappa (> 0.80). Following a similar approach, additional studies developed OBCD 

algorithms with an emphasis on developing new ways to characterize object-level change. 
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Bontemps et al. (2008) integrated the Mahalanobis distance calculation and a thresholding 

method to identify change objects. Conchedda et al. (2008) used a nearest neighbour supervised 

classification approach and reference data to quantify changes. Similarly, Stow et al. (2008) 

compared a nearest neighbour classifier and fuzzy membership functions to monitor shrub 

change, with results demonstrating superior performance using the nearest neighbour classifier. 

Other studies evaluated several unsupervised solutions with the ISODATA classification 

algorithm (Duveiller et al. 2008), and change vector analysis (CVA) (Park and Chi 2008). In 

addition to comparing different classifiers, Im et al. (2008) evaluated the performance of adding 

object correlation images and neighbourhood correlation images within the classification feature 

space. Their results revealed that the incorporation of these new features produced more accurate 

change feature classes (Kappa > 0.85). Rather than conducting a combined segmentation of 

multitemporal images, Li et al. (2009) describe an incremental segmentation procedure designed 

for radar imagery, where they started by (i) segmenting the first-date image, (ii) treating the 

result as a thematic layer, then (iii) segmenting the derived layer together with the second-date 

image. Their intent was that the previous segmentation would constrain each subsequent 

segmentation so as to avoid inconsistent results when using unique segmentations (e.g. objects 

with varied boundaries).  

 A single segmentation step using all multitemporal images facilitates OBCD by creating 

consistent image-objects in size, shape and location coordinate over time. However, it is unclear 

whether this form of change detection is influenced by segmenting before- and after-change 

images together, as the same geographic location may have different objects. Similarly, the effect 

of mixed object spectral information (from different atmospheric, meteorological, illumination 

and viewing angle, etc.) on change results remains to be explored.  

 

5.4. Hybrid change detection 

Unique from the algorithms we have previously discussed, are methods which involve the use of 

both object and pixel paradigms. These, we refer to as hybrid change detection. A widely used 

hybrid approach comes from the idea that the preliminary change information should be derived 

from pixels; while object schemes are subsequently applied to better extract the change results.  

A novel hybrid change detection algorithm was proposed by Carvalho et al. (2001). The 

authors showed that wavelet inter-scale correlation computed from pixel-based difference images 
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(e.g. differencing, rationing, PCA, CVA) were effective to identify all land cover changes over a 

study area. Region growing segmentation was then performed to extract objects solely where 

changes occurred, avoiding the time-consuming task of segmenting all remotely sensed images. 

The authors concluded that this approach was insensitive to geometric misregistration and 

atmospheric discrepancies between the multitemporal images, as well as to differences in the 

phenological state of vegetation patches. This procedure aids automation, and since 2003 has 

been used on an operational basis by the government of Minas Gerais, Brazil, to update 

vegetation maps. In another study, Al-Khudhairy et al. (2005) applied pixel-based PCA and 

image differencing to high spatial resolution imagery. The change images were then analyzed by 

an object-based classification, which improved upon the pixel-based change detection. In the 

studies conducted by McDermid et al. (2008) and Linke et al. (2009), multispectral images were 

transformed into wetness bands, which were effective for detecting forest disturbance (Franklin 

et al. 2001). This transformation was followed by a pixel-based image differencing using 

wetness information with an object-based classification applied to the changed areas. Niemeyer 

et al. (2005) used a similar procedure; however, their research emphasized on the creation of 

pixel-based mutually orthogonal difference images, rather than employing the traditional image 

differencing method. Yu et al. (2004) applied segmentation to a difference image from a forest 

canopy height model, generated from a small footprint, high sampling density lidar (light 

detection and ranging). Results showed that individually harvested trees were accurately 

delineated.  

The hybrid algorithms that combined pixel- and object-based schemes successfully 

reduced noisy changes, as well as the small and spurious changes introduced by the inconsistent 

delineation of objects (McDermid et al. 2008). However, as many steps are involved in hybrid 

change detection, it remains unclear how the final change results are influenced by the different 

combinations of pixel-based and object-based schemes.      

 

6. Conclusions 

Accurate and rapid acquisition of landscape change facilitates decision-making and supports 

sustainable development. Over three decades, activities using remotely sensed imagery to 

monitor Earth’s surface change have proven effective in a variety of fields, thanks to distinctive 

remote sensing characteristics, such as large geographical coverage, high temporal frequency, 
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low cost and increasingly spatial resolution. Among them, the recent feature of high spatial 

resolution provides a remarkable potential to monitor our land use changes with much more 

detail than ever before. To successfully achieve this goal, however, a reconsideration of 

traditional pixel-based change detection approaches is also an essential.  

In the last decade, an object-based paradigm of modelling geographic entities by combing 

segmentation, spatial, spectral and geographic information along with analyst experience derived 

from image-objects has drawn high attentions in the remote sensing community. Incorporating 

this new paradigm into change detection – object-based change detection (OBCD) – meets the 

objective of identifying differences in geographic objects, i.e., meaningful image-objects 

(Castilla and Hay, 2008). Specifically, OBCD has demonstrated particular strengths over pixel-

based approaches in dealing with several critical issues in change detection enabling: (i) spatial 

multiscale analysis to optimize the delineation of individual landscape features, while the spatial 

scale of pixels is predefined by the sensor resulting in reduced change detection accuracy; (ii) 

reduction of small spurious changes due to high spectral variability in high spatial resolution 

imagery, change of viewing geometry, and slight misregistration between multitemporal images, 

while applying pixels as the basic units tends to produce more salt-and-pepper noises; (iii) 

object-based features to facilitate change detection that not only provides more metrics (e.g. 

shape and size) than those from pixels, but also generates more meaningful object-adaptive 

windows/kernels than the ones heuristically/arbitrarily defined.  

 The new features of image-objects, however, raise new challenges in OBCD. Research 

endeavours to deal with these challenges are summarized in four groups: image-object, class-

object, multitemporal-object, and hybrid change detection. Compared to traditional pixel-based 

change detection, OBCD algorithms have to consider not only spectral and/or texture 

information, but also object geometry. Statistics or GIS functions facilitate the implementation of 

image-object comparison, although heuristically defined thresholds are often needed. We further 

note that, image-objects independently derived from multitemporal imagery rarely have the same 

object boundaries for the same landscape features, due to the variations in viewing geometry, 

illumination, etc. As a result, silver polygons are generated by differencing two or more image-

objects. Recent solutions include segmenting all multitemporal images at one step and 

backdating or updating one-date land cover maps. However, limitations remain in these 

approaches, which either rarely consider the influence of segmenting before- and after-change 
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images together, as the same geographic location may have different objects, or rely on well-

developed high-accuracy reference maps. The evaluation of OBCD results is another critical 

issue that has raised researchers’ attention. Preliminary results show that objects may be well 

suited to quantify changes when only one class of the landscape features is the research 

emphasis. However, a system and thorough comparison of using points and objects in OBCD 

accuracy assessment for various types of landscape features remains to be completed.   

 Most OBCD algorithms have been developed fairly recently with the published literature 

describing applications over a variety of fields, including (i) vegetation change, (ii) urban 

change, and (iii) other applications. Specifically, (i) many researchers have focused on OBCD in 

defining the dynamics (e.g. disturbance and recovery post-disturbance) occurring over boreal 

(Hall and Hay 2003, McDermid et al. 2003, 2008, Hese and Schmullius 2004, Yu et al. 2004, 

Desclée et al. 2006, Wulder et al. 2008b, Middleton et al. 2008, Linke et al. 2009), tropical 

(Carvalho et al. 2001, Bontemps et al. 2008, Duveiller et al. 2008), and temperate (Willhauck et 

al. 2000, DeChant and Kelly 2009) forest ecosystems. OBCD has also been applied to detect 

changes occurring over savannah (Carvalho et al. 2007), mangrove (Conchedda et al. 2008), and 

riparian (Johansen et al. 2010) ecosystems, with additional investigations upon shrub 

encroachment (Laliberte et al. 2004) and retreat (Stow et al. 2008). (ii) OBCD is well suited to 

portray urban change, as anthropogenic objects (e.g. buildings, roads and parking lots) have 

distinct boundaries and are relatively internally homogeneous. Application examples are 

geographically disparate, including Africa (Durieux et al. 2008, Gamanya et al. 2009, Bouziani 

et al. 2010), Asia (He et al. 2005, An et al. 2007, Li et al. 2009), Europe (Grenzdörffer 2005, 

Walter 2005, Doxani et al. 2008), and North America (Owojori and Xie 2005, Im et al. 2008, 

Gweon and Zhang 2008, Zhou et al. 2008, Bouziani et al. 2010). Urban change may also refer to 

defining structural damage (e.g. building collapse). Compared to urban development, structural 

damage is somewhat more difficult to detect using OBCD, as the post-damage images relate 

discrete and unclosed building edges (Chen and Hutchinson 2007). Recent studies have assessed 

the use of OBCD algorithms to interpret various types of urban damage caused by natural 

disasters (e.g. earthquakes or tsunamis) or humanitarian crises (Al-Khudhairy et al. 2005, Chen 

and Hutchinson 2007, Gong et al. 2008, Tanathong et al. 2009). (iii) In addition to the 

applications related to vegetation dynamics or urban areas, OBCD has also been evaluated to 

detect feature change with military vehicles (Hazel 2001), lakes (Li and Narayanan 2003), 
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nuclear facilities (Niemeyer and Canty 2003, Niemeyer et al. 2005), quartzite (Carvalho et al. 

2001) and marble quarries (Mouflis et al. 2008), landslide-prone areas (Park and Chi 2008), and 

coastal regions (Berberoglu and Akin 2009).  

 Apparently, recent research efforts to develop OBCD algorithms for different application 

domains have dramatically advanced change detection studies using the object-based paradigm. 

However, challenges remain. For example, (i) OBCD has difficulties to detect changes in 

continuous geographic variables (e.g. NDVI and land surface temperature), as no precise 

boundaries of these variables can be defined (Bian, 2007). Thus, users should be mindful that 

objects portraying continuous spatial phenomena may be inconsistently generated. (ii) Beginning 

with the premise that landscape features can be delineated with objects, the performance of 

recent computer-aided segmentation algorithms is highly dependent on the specified task, where 

no single algorithm is appropriate under all conditions. Thus, a ‘trial-and-error’ approach is 

typically used to optimize the parameters. Errors from segmentation propagate through change 

detection. For example, changes smaller than the object size could not be detected (Desclée et al. 

2006). Even though geographic objects are perfectly delineated at one date, the handling of 

partial (i.e. sub-object area) changes has rarely been addressed (Chen and Hutchinson 2007, 

Gamanya et al. 2009). (iii) There remains little discussion on feature selection techniques, which 

is an important part of OBCD. Compared to the pixel-based change detection, OBCD benefits 

from a wider range of features to choose from, including spectral information, image-texture, 

geometry and relation to sub-/super-objects. On the other hand, this also increases the difficulty 

of choosing the most appropriate features for OBCD. In particular, when multitemporal and 

multiband images are used, the number of features further dramatically increases with the 

number of dates and bands. (iv) SAR (synthetic aperture radar) is another important remote 

sensing system; however, the application of SAR imagery in OBCD has been limited by the 

unsatisfied performance of the commonly-used commercial segmentation software due to the 

presence of speckle that can be modeled as strong noise (Rignot and van Zyl 1993, Ayed et al. 

2005). It is expected that the incorporation of more sophisticated algorithms, such as the MRF 

(Markov random field) approach (Smits and Dellepiane, 1997), the global maximum a posteriori 

(MAP) estimation (Caves et al. 1998) or spectral clustering ensemble (Zhang et al. 2008), in 

commercial software will support a better use of SAR imagery in OBCD.   
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 Despite challenges in OBCD remain to be addressed, the research activities of 

incorporating the object-based paradigm in change detection offer unique approaches and 

methods for exploiting high spatial resolution imagery, to capture meaningful detailed change 

information in a systematic and repeatable manner, corresponding to a wide range of information 

needs. 
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Figure 1: Comparison of classified maps using (a) a multiscale object-based, and (b) a pixel-

based approach (modified from Cleve et al. 2008).  
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Figure 2: Comparison of change detection results using (a) an object-based and (b) a pixel-based 

approach (modified from Zhou et al. 2008).  
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Figure 3: Illustration of the different viewing geometries under which the four years (2003, 

2004, 2005 and 2006) of images were collected (adapted from Wulder et al. 2008b).  
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Figure 4: A forest stand covered by image-objects (with white and yellow boundaries), where 

the yellow object tacks tree counts and vegetation health over the same geographic area 

(adapted from Wulder et al. 2008b).  
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Figure 5: Two hypothetical image-objects extracted separately from (a) date 1 and (b) date 2, 

and (c) their overlay showing displacement due to image misregistration.  
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Figure 6: Object-based texture calculated within (a) individual object A or (b) neighbouring 

objects – A, B, C, D, E and F (adapted from Chen and Hay, 2011).  

 

 

 

 


